Like most websites, 30MHz uses cookies to remember you so that we can deliver an optimised browsing experience. Select ‘Accept all’ if you’re okay with accepting cookies from UserEngage (webchat and lead generation), Hotjar (website improvement) and LinkedIn (tailored ads). When you select ‘Accept only necessary’, we will place cookies that let you use our website properly by remembering your preferences and for anonymous statistics. For more information, please see our cookie policy and privacy notice.

Accept all
Accept only necessary

Growing cherry tomatoes remotely

October 09, 2019

Together with Delphy and Wageningen University, 30MHz will be participating in the Autonomous Greenhouse Challenge this year as part of team Automators. The challenge is to grow a cherry tomato crop remotely in 6 months’ time. The tomatoes will not only be judged by their looks, but also by their taste.

We’re competing against 4 other teams that remained after the ‘pre-challenge’ in September, a 24-hour hackathon in which 21 international teams took part. From December onwards, WUR is giving us access to a greenhouse in Bleiswijk to start growing our cherry tomatoes remotely, with our own specially developed algorithms. During the first week of the challenge we’ll get one-time access to the greenhouse to install sensors, cameras and other equipment. After that, the doors will be locked for all candidates for 6 months.

The cherry tomatoes should not only grow and flourish, but they also have to taste good. In order to influence taste and structure, we can adjust the nutrient composition and the EC. Next to that, we’ll have to think about crop specific aspects, such as how are we going to prune the cherry tomatoes? Which LED-spectrum will we use? There will be LED and SON-T lamps available at the greenhouse. The LED lights can be dimmed, switched off, or the whole lamp spectrum can be changed. There’s a lot to control and finetune.

You might be thinking, is it really possible to grow a cherry tomato crop remotely? Well, not 100%. There will be people present at the greenhouse who will take care of, for example, leaf picking and harvesting. We won’t be using robots for that. However, it’s important to note that these people can only do what the team instructs them to do. The team can send them instructions via a special app. So they can’t intervene on their own initiative, even when they see the crop is not doing well.

09-12-19 | The Automators meeting at Delphy

The goal of the challenge is to stimulate new developments and innovations in digital technologies for horticulture. Next to that, it also offers new insights into crop cultivation. There will be a control group of growers from the area, who will keep a close eye on the crops and the growing techniques that are being used. They can benefit from the crop information and learnings about data management and the use of digital tools, as they are able to apply them in their daily work. We’re very happy to see this growing collaboration between various disciplines. It creates synergy, which will help us further ensure a future-proof horticultural sector.

We’ve talked to Klaas van Egmond (team member The Automators), crop engineer at Delphy.

“During the challenge 30MHz and Delphy are very complimentary to each other. Where Delphy supplies the crop knowledge that is needed to develop these systems, 30MHz has the knowledge on how to engineer these systems and build the smart models that are needed.

How do you grow tomatoes remotely?

We grow tomatoes remotely by getting data from the crop and his environment. And use this data to create models to simulate the growth of the tomato plants. With this data and these models, we optimise the decisions we take in the growth process of the tomato plant.

Why is it important to digitise growing? How does it help the growers? 

I think it’s important to digitise the management of crop cultivation because there is an increasing demand for food and flower production and fewer people to grow it. It helps growers by using artificial intelligence to prevent mistakes, to increase their span of control and to optimise their input versus output.

How do you see the future for digital agriculture?

The future of digital agriculture will bring together the dream of very large and high precision growing companies. Besides that I believe that there won’t be agriculture at all without all the smart digital systems that are being developed now.

More information: www.autonomousgreenhouses.com

How can we help you digitise your cultivation process?
Analyse all kinds of information from different data sources such as climate computers, sensors and manual input in a central platform. Improve the production process of your crops, plants, seeds or bulbs together with advisors, distributors and researchers. We are happy to talk to you about which service model is most suitable for your company.
  • Please specify your needs here.

Crop consultant: Remote advice is direct and future proof

The single greatest benefit from crop consultancy at a distance? Leo van Uffelen has no doubt: It’s the speed. The crop consultant believes that remote advice is the future in horticulture.  Convincing the sector can be tough. But Leo has a weapon: data. Subscribe to our newsletter to read more stories like this Leo works ...
Read more

How Brabant Plant grows more valuable data

Brabant Plant connected their climate computer to the 30MHz platform early 2020. This led to valuable benefits. Cultivation researcher Marvin Verkuijlen tells us about his experiences with the integration. “Now it’s easier to compare different compartments.” Brabant Plant is a Dutch family business that focuses on breeding young vegetable plants and pot plants. Apart from ...
Read more

Videos about digital horticulture: 7 webinars by 30MHz

Digital horticulture is a vast and rapidly evolving field. We like to help you get the most out of digitisation, or get you started. That’s why we organized a series of webinars about a wide range of topics. From how to get started with a data platform, to the capture of O2 and photosynthesis data. ...
Read more